The zeta function of $M_{3} \times \mathbb{Z}^{2}$ counting all subrings

1 Presentation

$M_{3} \times \mathbb{Z}^{2}$ has presentation

$$
\left\langle z, x_{1}, x_{2}, a_{1}, a_{2}, x_{3} \mid\left[z, x_{1}\right]=x_{2},\left[z, x_{2}\right]=x_{3}\right\rangle .
$$

$M_{3} \times \mathbb{Z}^{2}$ has nilpotency class 3.

2 The local zeta function

The local zeta function was first calculated by Luke Woodward. It is

$$
\begin{aligned}
\zeta_{M_{3} \times \mathbb{Z}^{2}, p}(s)= & \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(2 s-5) \zeta_{p}(3 s-7) \zeta_{p}(3 s-8) \\
& \times \zeta_{p}(4 s-10) W\left(p, p^{-s}\right)
\end{aligned}
$$

where $W(X, Y)$ is

$$
\begin{aligned}
& 1+X^{4} Y^{2}+X^{5} Y^{2}-X^{5} Y^{3}-X^{7} Y^{4}+X^{10} Y^{4}-2 X^{10} Y^{5}-2 X^{11} Y^{5}+X^{11} Y^{6} \\
& -X^{14} Y^{6}-X^{16} Y^{7}+X^{16} Y^{8}+X^{17} Y^{8}+X^{21} Y^{10}
\end{aligned}
$$

$\zeta_{M_{3} \times \mathbb{Z}^{2}}(s)$ is uniform.

3 Functional equation

The local zeta function satisfies the functional equation

$$
\left.\zeta_{M_{3} \times \mathbb{Z}^{2}, p}(s)\right|_{p \rightarrow p^{-1}}=p^{15-6 s} \zeta_{M_{3} \times \mathbb{Z}^{2}, p}(s)
$$

4 Abscissa of convergence and order of pole

The abscissa of convergence of $\zeta_{M_{3} \times \mathbb{Z}^{2}}(s)$ is 4 , with a simple pole at $s=4$.

5 Ghost zeta function

The ghost zeta function is the product over all primes of

$$
\begin{aligned}
& \zeta_{p}(s) \zeta_{p}(s-1) \zeta_{p}(s-2) \zeta_{p}(s-3) \zeta_{p}(2 s-5) \zeta_{p}(3 s-7) \zeta_{p}(3 s-8) \zeta_{p}(4 s-10) \\
& \quad \times W_{1}\left(p, p^{-s}\right) W_{2}\left(p, p^{-s}\right) W_{3}\left(p, p^{-s}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& W_{1}(X, Y)=1+X^{5} Y^{2}+X^{10} Y^{4} \\
& W_{2}(X, Y)=1-X^{4} Y^{2}-X^{6} Y^{3} \\
& W_{3}(X, Y)=-1+X^{5} Y^{3}
\end{aligned}
$$

The ghost is unfriendly.

6 Natural boundary

$\zeta_{M_{3} \times \mathbb{Z}^{2}}(s)$ has a natural boundary at $\Re(s)=5 / 2$, and is of type II.

